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1 Review From Last Week

Last time, we investigated the collisional drift-wave (DW) instability model—Hasegawa-Wakatani
(H-W) equations:

ρ2s
∂

∂t
∇2
⊥φ̃+

ṽr
n0

∂ρ2s〈∇2
⊥φ〉

∂r
= D‖∇2

‖(φ̃−
T

|e|
ñ

n0
) + ν∇2ρ2s∇2

⊥φ̃

∂
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ñ

n0
+
ṽr
n0

∂〈n〉
∂r

= D‖∇2
‖(φ̃−

T

|e|
ñ

n0
) +

D0

n0
∇2
⊥ñ,

(1)

where φ is electrical potential, ρs is gyro-radius, D‖ is parallel diffusion, ν is kinematic viscosity,
and D0 mass diffusivity. We defined α as k2‖v

2
th,e/γie

ω , where γie is electron-ion collision rate. Usu-
ally, we have adiabatic limit, or DW regime, with adiabatic parameter α > 1. This regime (DW
instability has growth and reach relaxation) requires ω < ω∗(diamagnetic frequency) and under
the assumption of a non-Boltzmann correction ñ

n0
' |e|φ̃

T
+ h̃, where h̃ is due to non-adiabatic

electron. In this regime, we have several phenomenon/properties:
• non-zero 〈ṽrñ〉, due to non-zero parallel dissipation and ω < ω∗

• system allow outward radial flux and instability (criterion of ω < ω∗)
• energy gained from gradient relaxation exceeds the cost of “pumping” the potential

When α→∞, H-W model will reduced to Hasegawa-Mima (H-M) model—that describes collis-
sionless DW instability. The H-M equation is

∂

∂t
(∇2φ− φ)− [(∇φ× ẑ) · ∇][∇2φ− ln(n0)] = 0, (2)

and potential vorticity (PV) is conserved, where PV ≡ φ− ρ2s∇2φ+ ln(n0). To differentiate the
DW instability (α > 1) and ideal/resistive MHD (α < 1), the key is understanding the Ohm’s
Law balance:

(E + v ×B)‖ + T∇‖n︸ ︷︷ ︸
DW trigger

= ηJ‖︸︷︷︸
dissipation

. (3)

Note that though we discuss how∇n trigger DW instability, ∇T can also do so. And that an H-W
system can be describe by the Schmidt number:

Sc ≡ ν

D0
=

kinematic viscosity
mass diffusivity , (4)

that illustrates the ratio of the last term in momentum and density equation.

2 Zonal mode

Decompose total density we measure into the mean and the perturbation such that
〈n〉 ≡ n0(r) + δn(r),

where perturbation δn(r) can be viewed as “corrugation" upon the mean, and it is due to the
feedback (i.e. transport) of fluctuations on profile (see Fig. 1). Here after we replace notation
of perturbation of density ñ/n0 in Eq.1 as δn, and we call δn(r) the zonal density perturbation.
Similarly, ∇2

rφ(r) the zonal vorticity, which is from divergence of polarization current ∇ · Jpol =

− ∂

∂t
ρpol and under the assumption of azimuthal symmetry. Here, φ is from the E×B zonal flow.

It is important to clarify that
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Figure 1: Mean density and density corrugation (zonal density). Zonal density feeds back on the density profile,
which evolves the zonal mode

• E ×B flow: is a zonal flow move in vE×B velocity.

• mass flow: vmass =
∫
d3vvf , where f is distribution function of velocity.

Homework: Work out the mass flow for fluid ions. Keeping E × B, diamagnetic, polar-
ization.

Zonal flow arises naturally via vorticity ∇2φ. Zonal flow produce E×B shear, hence the oper-
ator d

dt
now has shear flow component in cartesian coordinate (where x in radial, y in poloidal,

and z in toroidal direction) such that
d

dt
→ ∂

∂t
+ vE×B(r)

∂

∂y
+ v · ∇, (5)

where vE×B(r) is E ×B shear flow and have r-dependence due to φ = φ(r). And the zonal mean

Eddy

Shear Flow 

Eddy distorted by 
the shear !ow

Figure 2: Shear flows disorder and rip apart the eddies.
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shear is equal to the mean vorticity:
∂

∂r
〈vE×B(r)〉 = 〈∂2rφ〉. (6)

Hence, we have the total vorticity mean

〈∇2
⊥φ〉 = vE×B(r),0︸ ︷︷ ︸

large scale
shear flow

+ 〈∂2rφ(r)〉︸ ︷︷ ︸
generate from
micro-scale DW

. (7)

Notice that the shear flow can be multi-scaled. Shear flow can be decomposed into several terms
based on scales

• macro-scale: vE×B(r),0 that is prescribe, and

• meso-scale (zonal-flow scale): 〈∂2rφ(r)〉 generate from the micro-scale DW.

2.1 Zonal Density evolution

Now, we are interested in zonal density evolution. This can be derived from average over the
density H-W equation (see Eq. 1):

∂

∂t
〈ñ〉+

∂

∂r
〈ṽrñ〉 = Sn︸︷︷︸

source
+D0∇2

r〈n〉︸ ︷︷ ︸
ambient
diffusion

, (8)

where the angle braket is the zonal ensemble average 〈〉 ≡ 1

T

∫
dt

1

Ly

∫
dy, 〈ṽrñ〉 = 〈ṽrh̃〉 is radial

particle flux due only to the non-adiabatic part because the Boltzmann piece cancels, and Sn is
the particle source. So, the particle density flux evolves the zonal density and the density
profile. The key question then will be how to calculate the particle density flux 〈ṽrh̃〉? One way
is from quasi-linear (QL) theory and get the linear response of the non-adiabatic density to the
perturbation flow ṽr. Notice that the QL theory requires system has Kubo numberKu < 1, and it
is good for the system has dissipative dynamics (i.e. h̃ = (ω−ω∗)

−i�ω+
k2‖v

2
th,e

γie

). Notice that (ω − ω∗) will

induce a non-linear frequency shift. BTW, the corrugation δn(r) will modify the ω∗ since ω∗ ∝
∇〈n〉, and mean density will be modified by the corrugation. The scale of density corrugation lc
lies on the mesoscale (see Fig.1 and 3 ), and can be predicted as a geometric mean of length of
mean density and the gryro-radius lc '

√
ρsLn. And there is also a spectrum of zonal flow on

mesoscale. Hence, QL type thinking will be that zonal density (corrugation) feeds back on the
density profile, which evolves the zonal mode. And from QL theory, we have

a

System  
size

Ln

Length 
of mean  
density 

 ρs

Gyro-radius

Mesoscale

Length scale

Figure 3: Lengthscale

4



∂

∂t
δn =

∂

∂r
Dn

∂

∂r
δn, (9)

where density diffusivity Dn (where ω � k2‖v
2
e,th/γie) is

Dn '
∑
k

|ṽr,k|2
k2⊥ρ

2
s

1 + k2⊥ρ
2
s

ωkγei
k2‖v

2
e,th

'
∑
k

|ṽr,k|2
k2⊥ρ

2
s

1 + k2⊥ρ
2
s

1

α
, (10)

where ion-polarization drift k2⊥ρ2s comes from the (ω − ω∗). Notice that the term 1

α
comes from

the collision, origin of irreversibility, and causes dissipative phase shift.
Recall the QL equation for the 1D Vlasov equation:

∂

∂t
〈f〉 =

∂

∂v
Dv

∂

∂v
〈f〉, (11)

where Dv is QL diffusion in velocity

Dv =
∑
k

q2

m2
|Ek|2

γk
(ω − kv)2 + |γk|2

, (12)

where Ek is the scattering fields.
Recall that the term γk

(ω − kv)2 + |γ|2
comes from the wave-particle resonance and causes a

resonant phase shift. Here, we don’t have collision, so the irreversibility comes from the chaos
(Chirikov, 1969). More can be found in KAM theorem (Kolmogorov, 1954; Möser, 1962).

Homework: (a) Derive the QL equation for the collissionless drift wave.
Hint: you will have similar equations as in Eq. 11 and 12 .

2.2 Vorticity Flux and Enstrophy

We can do a similar QL analysis for the evolution of the vorticity (or polarization charge)
∂

∂t
〈∇2

rφ〉+
∂

∂r
〈ṽr∇2

rφ̃〉︸ ︷︷ ︸
flux of vorticity

= ν∇2
r〈∇2

rφ〉︸ ︷︷ ︸
viscous diffusion

. (13)

The key to the zonal flow evolution is the flux of vorticity and it requires some discussion. What
is the physics of vorticity flux? First, we have a correlator of ṽr with ∇2

rφ̃

〈ṽr∇2
rφ̃〉 = 〈 ∂

∂y
φ̃(

∂2

∂x2
φ̃+

∂2

∂y2
φ̃)〉 (14)

= 〈 ∂
∂y
φ̃(

∂2

∂x2
φ̃)〉, (15)

where the second term has odd term ∂3y and after ensemble average it becomes zero, under the
assumption that the poloidal and toroidal symmetry (but here we ignore kz → 0). So we have

〈ṽr∇2
rφ̃〉 = 〈 ∂

∂x
(
∂

∂x
φ̃+

∂

∂y
φ̃)〉 − 〈

��
�
��
�*
odd in ky

∂2

∂xy
φ̃
∂

∂x
φ̃〉 (16)

=
∂

∂x
〈 ∂
∂x
φ̃+

∂

∂y
φ̃〉 (17)

=
∂

∂x
〈ṽrṽθ〉 (18)
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So we have
〈ṽr∇2

rφ̃〉 =
∂

∂x
〈ṽrṽθ〉︸ ︷︷ ︸
E ×B

Reynolds Force

(19)

Hence, the physics of vorticity is that the vorticity flux act as the Reynolds Force that drives
the E ×B shear flow1.

Homework: (a) Prove the magnetic Taylor Identity.
Show 〈B̃rJ̃‖〉 =?
(b) Relate (a) to charge balance condition. Show

∂

∂t
〈∇2
⊥φ̃〉 =

∂

∂r
[ 〈ṽr∇2

⊥φ̃〉︸ ︷︷ ︸
E ×B Reynolds stress

− 〈B̃rJ̃‖〉︸ ︷︷ ︸
Maxwell Stress

], (20)

and what is the meaning?

2.3 Relate the vorticity and transport—PV and Enstrophy

How do we relate the vorticity ∇2
⊥φ (see Sec.2.2) and transport δn (see Sec.2.1)? The free

energy for the DW instability is the density gradient ∂xn0. In limited cases, vorticity gradient
can drive the Kelvin-Helmholtz instability (will talk in later classes). A fair question we should
ask is

The story we have now is on one hand, the density gradient provide the free energy
(entropy production), drive turbulence, and hence the system reach its relation. On the
other hand, these turbulence unset zonal flows. So questions will be—how we treat the
zonal density and zonal vorticity on the same bases? Is there more underlying physics?

To answer these questions, understanding PV is important. Hereafter we are working in a limit
that the (collisional) kinematic viscosity equals (collisional) mass diffusivity ν = D0 (or Sc = 1).
Hence, we can simplify H-W equations (see Eq.1) as

∂

∂t
(δn− ρ2s∇2

⊥φ̃) +
ṽr
n0

∂

∂r
(〈n〉 − ρ2s〈∇2

⊥φ〉) = ν∇2
⊥(δn− ρ2s∇2

⊥φ̃). (21)

The LHS looks like continuity equation. If ν → 0, we have

d

dt
(δn− ρ2s∇2

⊥φ̃) = 0.

Hence, we can define this conserved term as PV
PV ≡ δn− ρ2s∇2

⊥φ̃ ≡ q (22)

≡ |e|φ̃
T

+ h̃︸︷︷︸
non-

Boltzmann

−ρ2s∇2
⊥φ̃ (23)

So we have PV conservation
d

dt
PV = 0, or O(ν). (24)

This indicate that changing density leads to changing flow shear. To be specific:
1Wood & McIntyre (2010) propose an idea that once there is 1D symmetry in PV mixing, then you can prove there

will be a zonal flow formation. And we can also Taylor identity (Taylor, 1915) that link the vorticity flux to Reynolds
stress, and there a generalization form of Taylor identity called Eliassen-Palm relation (Eliassen, 1960) in geo-fluid
dynamics.
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• any relaxation of density must be accompanied by a vorticity flux, in order to conserve PV.

• any density relaxation drives the vorticity flux and hence creates the zonal flow.
Note that if we view PV as a “charge", then density corrugation δn can be viewed as a guiding
center charge (i.e. electron) and ρ2s∇2

⊥φ̃ can be viewed as a polarization charge (i.e. ion)

PV ≡ δn︸︷︷︸
electron (guiding
center charge)

− ρ2s∇2
⊥φ̃︸ ︷︷ ︸

ion (polarization
charge)

,

and PV conservation is a conservation of total charge .
One can define “mean-square charge" as Potential Enstrophy (E ≡ 〈q2/2〉). The potential en-
strophy is also a conserved quantity since if q is conserved (i.e. no dissipation), so is q2. We times
a q to LHS and RHS of Eq. 21, we have the charge balance equation:

∂

∂t
E + 〈ṽrq〉

∂

∂r
〈q〉︸ ︷︷ ︸

PV flux production

+
∂

∂r
〈ṽrE〉︸ ︷︷ ︸

turb. spreading

= ν∇2
⊥(E)︸ ︷︷ ︸

dissipation term

. (25)

Note that the third term on LHS is third-order of fluctuation, reflecting the turbulenct spreading—
the turbulent transport of potential enstropy (E). By apply Taylor identity on PV flux produc-
tion, we have

〈ṽrq〉
∂

∂r
〈q〉 =

[
〈ṽrh̃〉 −

∂

∂r
〈ṽrṽθ〉

]
∂

∂r
〈q〉 (26)

Rewrite Eq.25, we have

〈ṽrh̃〉︸ ︷︷ ︸
particle flux

− ∂

∂r
〈ṽrṽθ〉︸ ︷︷ ︸

vorticity flux

=
−1

∂

∂r
〈q〉

[
∂

∂t
E +

∂

∂r
〈ṽrE〉︸ ︷︷ ︸

turb. spreading

− ν∇2
⊥E︸ ︷︷ ︸

dissipation

]
, (27)

and it is important that ∂

∂r
〈q〉 9 0. If ∂

∂r
〈q〉 = 0, we have shear flow instability. This indicates

that in steady state (∂t = 0), the particle flux should be equal to the vorticity flux, up to
higher order contribution or dissipation. Namely

〈ṽrh̃〉︸ ︷︷ ︸
particle flux

' ∂

∂r
〈ṽrṽθ〉︸ ︷︷ ︸

vorticity flux

+O(spreading+ dissipation).

Hence, PV conservation relates the particle flux to the vorticity flux (zonal flow drive).
One can go further by considering drag of zonal flow and modifying the vorticity flux (Reynolds
force) term as

− ∂

∂r
〈ṽrṽθ〉 =

∂

∂t
〈vE×B〉+ µdrag〈vE×B〉.

Plugging the above modification to Eq.27, we have

∂

∂t

[
E

∂r〈q〉
+ 〈vE×B〉

]
+ 〈ṽrh̃〉 = +

−1

∂

∂r
〈q〉

[
∂

∂r
〈ṽrE〉︸ ︷︷ ︸

turb. spreading

− ν∇2
⊥E︸ ︷︷ ︸

dissipation term

]
− µdrag〈vE×B〉 (28)

This is the Charney-Drazin (C-D) Theorem (Charney & Stern, 1962), which illustrates constrain
of PV conservation on zonal flow production and its relation to transport. Here, the particle flux
is turbulent drive and the drag term can drive zonal flow in steady state. The term E

∂r〈q〉
is wave

7



momentum density (WMD). And kθ
E

∂r〈q〉
is pseudo-momentum density 2.

If there is no spreading, dissipation, drag, or particle flux, then Eq.28 becomes

∂

∂t

[
E

∂r〈q〉
+ 〈vE×B〉

]
= 0 . (29)

This indicates that zonal mode and waves are non-linearly coupled. If there is no particle flux,
spreading, or other dissipations, the relaxation wave is what drives the zonal flow—one can
accelerate the zonal flow only if change the WMD (i.e. change in fluctuation/turbulence inten-
sity). This is also called the non-acceleration theorem3. Hence, zonal flow can be ‘saturated’ by
zonal flow/fluctuation interaction such as:

• Collisional viscosity ν can damp the turbulence/fluctuation intensity. And since zonal flow
is fed on turbulence/fluctuation intensity (predatory-prey model), zonal flow will be also
damped.

• The system can reach a saturate state but not steady, so we have an energy oscillation called
Limit Cycle Oscillation. This is similar to the predator-prey model but in different limits.

• Density corrugation can saturate zonal flow.

• Turbulent viscosity νturb can saturate the zonal flow when the system becomes unstable
due to the shear flow instability. And this can be also viewed as a predator-prey model.

Homework: Derive the C-D theorem for forced Charney equation. Compare it to H-W
case.

2Recall the wave momentum density k ∂ε
∂ω
|E|2, where ∂ε

∂ω
|E|2 is wave action density (N). And this pseudo-

momentum density is rewritten in DW variables from the wave momentum density.
3Note that 〈δf2〉 sometimes related to ‘entropy’ and hence one can also have the ‘entropy balance theorem’.
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3 Reduced MHD

The simplest model for electromagnetics is reduced MHD. The key to the reduced MHD is the
timescales. The key timescale ordering for H-W and H-M model is small Rossby number Ro < 1,
i.e. ω < Ωi(gyrofrequency, or ion cyclotron frequency). In MHD, there are 7 modes—v has three
modes, B has two (∇ ·B = 0), 1 from pressure p and ρ respectively. 3 modes is interesting (the
fast, medium, and slow mode), 1 is entropy mode (ωen = 0):

• Fast—Magnetosonic mode: ω2
MS = k2⊥(v2A,⊥ + C2

s )

• Intermediate—Shear Alfvén mode: ω2
SA = k2‖v

2
A (supported by reduced MHD model)

• Slow—acoustic (parallel) mode: ω2
AC = k2‖C

2
s .

In this course (i.e. fusion tokamak), β ≡ Pthermal/Pmag is small (' 0.05), so Cs < vA. In space, β
can be large. The legist of reduced MHD is to say we are considering a system with timescales that
live longer than the magnetosonic wave(fast mode)—eliminate the magnetosonic time scale (ω �
ωMS). In magnetosonic wave, the system compress the stiff magnetic fields in perpendicular
direction. And the stiffness leads to high frequency. ReducedMHD eliminate these high frequency
by introduce a comparatively strong straight magnetic field B0 in a direction (hereafter we set
the strong B0 in z-direction). The comparatively strong means that the magnetic curvature of B0

(Rc,B0) is larger thang the length scale we consider (k > 1/Rc,B0). The strong field also means
that ρv2 ' p� B2

0,z/8π, and it leads to quasi-2D system where the motion is strongly anisotropic
and all small-scale motions are generated in ⊥ direction only.

3.1 Derivation of reduced MHD

One if the most famous reference for studying reduced MHD is Strauss (1976). We write down
the Euler equation with J ×B force

ρ
∂

∂t
v + v · ∇v = −∇p+ J×B = −∇

(
p+

B2

2µ0︸︷︷︸
mag. pressure

force

)
+

(B · ∇)B

µ0︸ ︷︷ ︸
mag. curvature

force

(30)

Taking ∇· of above equation and assuming incompressibility in perpendicular dierction (∇⊥v =
0), we have

0 = −∇2

(
p

ρ
+

B2

2µ0ρ

)
+ 0. (31)

From above we obtain
δp ' −B · δB

µ0
. (32)

This is the perturbed pressure balance in reduced MHD. To sumerize, in reduced MHD, we
have

• consider timescales longer than the magnetosonic wave timescale τ � τMS ,
• flow has incompressibility∇·v = 0 forced by strongB0,z (in fusion plasmawe are interested

in ∇⊥ · v⊥ ' 0 and allows parallel sonic component), and

• perturbed pressure balance δp ' −B · δB
µ0

.

Because of the properties that eliminates fast mode and that its incompressibility, the reduced
MHD supports only the shear Alfvén wave (linear wave). One can star reduced MHD with

9



• (a) Continuity equation of charge ∂

∂t
ρ+∇·J = 0 with charge conserve along the trajectory

leads to ∇ · J = ∇ · (J‖ + J⊥) = 0 (i.e. plasma is quasi-neutral).

• (b) Electrical potential (φ) that defines velocity fields such thatE×B drift velocity vE×B ≡
ẑ ×∇φ/Bz.

• (c) Lorentz gauge E = −∇φ− ∂

∂t
A and Ohm’s Law4 E‖ = ηJ‖ = −η∇2A‖ .

We apply an operator (∇×) · ẑ on the Euler equation (see Eq.30) and obtain
(
∂

∂t
+ v · ∇

)
∇2φ =

��
��

��*
0

−∇× ∇p
ρ
−

B · ∇(∇2A‖)

µ0ρ
+ ν∇2(∇2φ), (33)

where B · ∇ ≡ B0∂z + δB⊥∇⊥. The first term on RHS −B · ∇(∇2A‖)

µ0ρ
is from J×B torque and

cause non-linearity in ⊥ direction. And from Ohm’s Law E + v ×B = µ0ηJ, we have induction
equation (

∂

∂t
+ v ·

)
A‖ = B · ∇φ+ η∇2A‖ . (34)

Note thatA‖ can be also viewed as ‘magnetic flux’. These equation are reduced MHD equations—
the 2 scalar evolution equations. These equations are derived based on facts that p and ρ are
unchanged in ⊥ direction, and δB and δv are in ⊥-plane, so we can reduce B and v to the gra-
dient of scalar across z. All the non-linear term is in perpendicular direction (⊥), while all the
linear terms are in parallel direction (z). Hence, a complicated problem can be decomposed into
2D dynamics (on ⊥-plane) plus Shear Alfvén wave (z- direction) problem. If we turn off lowest
order term B0∂z → 0, this reduced MHD will become a rigorous 2D MHD equations. Note that
there are 2 ways to derive reduced MHD from Boltzmann equation (see Fig.4 )—via different
orders of strong field approximation and fluid approximation.

Because of strong Bo,z, the ordering of reduced MHD (quasi-2D) is
B0,z ∼ ∇⊥ ∼ O(1)

B⊥ ∼ ∇z ∼ O(ε)

∂t ∼ v⊥ · ∇⊥ ∼ O(ε) (35)
And we take

ρ ∼ O(1) for ∇ · v = 0, (36)
δp ∼ v2⊥ ∼ B2

⊥ ∼ O(ε2) for partition of energy, and (37)
δBz ∼ O(ε2) for the pressure balance in Eq. 32 δp ' −B0 · δBz

µ0
(38)

And since δBz = (∇⊥ × A⊥) · ẑ and δBz is ∼ O(ε2), we can neglect the inductive electric fields
in perpendicular direction ∂tA⊥ ∼ O(ε3)—this is the electrostatic condition. Hence, we have

Lorentz gauge (if η → 0) reduce to E⊥ = −∇⊥φ−
�
�
���

0
∂

∂t
A⊥ = −(v ×B)⊥. So we have

v⊥ =
ẑ ×∇φ
B0

, (39)
4Note that if we consider the ‘drift-Alfvén wave’, we could consider the ∇‖p in Ohm’s Law balance. But usually

vA � ρCs/Ln, hence we ignore the DW effect.
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Boltzmann Equation

Reduced MHD

2-fluid equation 
(or Braginskii eq.)

1-fluid equation 
MHD

Gyro-Kinetic equation 
(GKE)

Gyro-fluid equation 
(GFE)

Take moments

Properties:  
1. Quasi-neutral 
2. Large scale/ low frequency 

Strong  B0

Properties:  
1. Strong   
2. low frequency ( ) 

B0
Ωi ≫ ω

Take moments of GKE

Derive kinetic Alfvén wave 
Use Ohm’s balance:  E∥ = ηJ∥

Figure 4: Two ways to derive RMHD from Boltzmann equation.

indicating that motion in perpendicular direction is E ×B flow.

3.2 Conservation Law of reduced MHD

From Sec. 3.1, we derive that the physics of reduced MHD can be decomposed into 2D MHD (in-
compressible) plus Shear Alfvén mechanism. So, one of conservation law is from incompressible
2D MHD—total energy

Etot =

∫
d3x

(
(∇φ)2

2
+

(∇A‖)2

2

)
. (40)

The total energy is consist of the kinetic energy part and the magnetic energy part.

The other conservation law is the magnetic helicity H ≡
∫
d3xA ·B:

H =

∫
d3xA‖ ·B‖. (41)

The degenerated form of magnetic helicity in 2D MHD is H2D =
∫
d2xA2 = conserved. But this

term is not conserved—in 3D induced EMF term B0 · ∂zφ 6= 0.

The third conserved quantity is the Cross Helicity (Hc =
∫
d3xvB)

Hc =

∫
d3xv ·B =

∫
d3x(∇φ · ∇A‖). (42)

This equation is related to Poynting flux (Sp = E × B/µ0), and Alfvén wave population (2-
direction propagation Alfvén waves) imbalance. All these conservation quantities above is con-
served to magnetic and fluid dissipation.

3.3 Extensions

One of the extensions for reduced MHD is 4-filed equation, which has several versions
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• Drake & Antonsen Jr (1984): φ, A‖, n, T . This model is good foe drift-tearing mode (mi-
croscopic instability driven by the current gradient).

• Hasegawa (1981): φ, A‖, v‖, Ti. Good for ITG mode.
One can get the four-field theory if is familiar with reduced MHD and H-W equations.

Homework: Derive drift-Alfvén model starting by combining reduced MHD and H-W
model.

4 Zonal flow and DW

4.1 ZF in Jupiter Atmosphere

What generate zonal mode? The answer is three waves interaction (related to Fermi’s golden
rule). The production of zonal flow involve the wave collision rate (C(N)) in wave kinetic equa-
tion (WKE) such that

C(N) =

∫
d3k′

(
· · ·
)
δ(k” − k − k′)δ(ωk” − ωk − ωk′ ) (43)

When there is no frequency mismatch ωk” − ωk − ωk′ ' 0, we have three wave resonance and
can have zonal mode production.

Zonal flow can be found in fusion device or in astronomical objects such as Jupiter atmosphere
and solar tachocline. Here we take Jupiter atmosphere as example. On the Jupiter atmosphere,
Rossby energy dissipation emitted out meridionaly and momentum is transport actively from the
equator that steepen the toroidal velocity gradient (see Fig.5). This can be illustrated by deriving
group and phase velocity of Rossby wave frequency

ωRossby,k = −βkx
k2y

, (44)

where x is toroidal (zonal) direction and y is in latitudinal direction. So the group velocity is

vg,y = 2β
kxky
(k4⊥)

∝ kxky. (45)

And we know that the latitudinal momentum transport (i.e. Reynolds stress) is 〈ṽxṽy〉 ∝ −kxky.
Hence we have

sign(vg,y) · sign(〈ṽxṽy〉) < 0, (46)
which indicates that Rossby wave is a backward wave—momentum transport into the zonal band
and energy transport out.

Kushner et al. (2001): ... the central result that rapidly rating flow, when stirred in a
local region, will converge angular momentum into this region.

The momentum is deposit to the stirred region and form a zonal band (see Fig5). The direction
of zonal flow depend on

• eastward in source region,

• westward in sink region,

12



• the rotation of planet β > 0, and

• negative diffusion phenomenon.

The phenomenon that momentum is transport to the up-gradient is the phenomenon of negative
diffusion. In biology, the cell is supported by active transport across the membrane, and that cost
energy, i.e. Adenosine Triphosphate (ATP). Because of the energy consumption for the negative
diffusion, the entropy will increase globally, while the negative diffusion steepening the velocity
gradient reduces entropy locally.

Equator

Energy 
radiation

Momentum 
convergence

Rossby wave

Toroidal velocity

Toroidal  v = 0

Zonal flow
y

x

Figure 5: Left:Jupiter atmosphere. Right Top: cartoon of Rossby wave illustrated in purple band. Yellow swirls indicate
stirring sources of Rossby wave. Right bottom: the toroidal (x-direction) velocity. There is opposite flow directions
in north and south part of zonal flow for momentum deficit because of transport to the stirred region (momentum
conservation).

4.2 ZF in Tokamak

Zonal flow in tokamak is

• Azimuthally symmetric: n = 0 potential mode of E ×B flow (with possible sideband);

• m = 0

And has properties:

• produce no transport since n = 0

• has minimal inertia (Hasegawa, 1981; Sagdeev et al., 1978) for k2⊥ρ2s < 1. This means
zonal mode are easy to excite.

• has minimal damping—no Landau damping where usually involve modes (van Kampen)
that has resonant denominator ∝ 1

ω−kv . Since ω → 0 and k‖ → 0, there is no Landau
damping. Hence, it is easy to put energy into zonal flows—once energy is in, it is weakly
damped.

• ZF can be damped by collisional friction (see Sec.2.3), and other stability issues (nonlinear
fluid damping) .
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From these properties, we know that zonal flow is a natural predator that is easy to feed off
and can retain energy released by gradient-driven micro-turbulence. Zonal flow can related to
polarization flux (or PV transport) such that

∂

∂t
〈vE×B〉 = 〈ṽr∇2

⊥φ̃〉, (47)

through Taylor identity (Taylor, 1915)

〈ṽr∇2
⊥φ̃〉 =

∂

∂r
〈ṽrṽθ〉, (48)

which relate flux of vorticity to the E ×B Reynolds force.

4.3 Zonal Flow/DW interaction

In this section, we will investigate the shear flow formation and its interaction with turbulence.
There are two ways to investigate: one is from real space study and another is from j-space cou-
pling.

In real space, we know that zonal flows produce shears and shear can distort eddies as dis-
cussed in Sec.2 Fig.6. The shear decorrelation rate can be calculated as 1/τc = k2xD⊥ →
(k2y∂x〈vE×B〉D⊥)1/3. This means we don’t need too much diffusion to trigger the shear flow
(Hahm, Burrell 1994). Shearing can affect wave-particle resonance—by producing shear ‘differ-
ential’ doppler shift such that

ω − k‖v‖ → ω − k‖v‖ − ky
∂

∂x
vE×B(r − r0). (49)

That create differential rotation. What happen when the shearing reaches saturation? How shear
modify the growth? A crude simple reasoning is to compare shearing rate v.s. instability growth
rate. When shear can rip eddies up before they grow, we have shearing saturation. In real space, tur-
bulence drives Reynolds stress. Reynolds stress drives shear flow via momentum transport. And
in turn, shear flows control the turbulence, and drives Reynolds stress again. This is the eddy
self-tilting feedback loop (see Fig.6). So, turbulence (wave) drive shear flow (zonal mode) via
momentum transport, and shear flow controls turbulence and hence support the Reynolds
stress. Notice that this can be view as predator prey model—shear flow (zonal flow) is preda-
tor and turbulence (wave) is the prey (see Fig.8). And that turbulence and shear flow are highly
nonlinear coupled—this is because wave and zonal mode are coupled nonlinearly as discussed in
Sec.2.3 Eq.29.

In k-space, To study shear flow, we can start with Eikonal theory in k-space, because of the
property that the scale of zonal flow is at larger scale than the waves and Eikonal theory is ap-
plicable. So, we can find the wave kinetic equation (WKE), which is in the form of Eikonal
equation

∂

∂t
N − ∂

∂kr
Dk

∂

∂kr
〈N〉︸ ︷︷ ︸

scattering in k-space
due to the eddy-tilting

= γk〈N〉︸ ︷︷ ︸
growth

−〈C(N)〉︸ ︷︷ ︸
damping

(50)

where N is wave action density N ≡ wave Energy
wave frequency and represents intensity of waves, C(N) is

the collision integral in Eq.43, and Dk is k-space diffusion. From Eikonal equation, we have the
evolution of kx in a shearing field

d

dt
kx = −∂(ω0 + uyky)

∂x
= −ky

∂uy
∂x

(51)
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This is the eddy tilting feedback loop aligning wave vector components. Once 〈kxky〉, flow evo-
lution occurs due to momentum transport. Then, flow shear amplification further amplifies the
Reynolds stress, etc (see Fig.6). The diffusion in k-space is

Dk =
∑
k

k2y|
∂

∂x
ṽE×B|2τk, (52)

which is the induced diffusion.

To summarize, zonal flow (shear flows) and waves turbulence forms an self-tilting feedback loop
that can be described as the predator prey model. The intensity of turbulence (i.e. population of
prey) depends on the intensity of zonal flow (i.e. predator). The collisional friction or nonlinear
fluid damping can control the zonal flow and turbulence can grow—just like we allow hunting on
big cats then antelopes can grow in the predator prey model. So the real control of wave turbulence
in the eddy-tilting feedback loop is flow damping, either collisional or nonlinear.

time

eddy

shear flow

Figure 6: Shear-eddy tilting feedback loop. The E ×B shear generates the 〈kxky〉 correlation and hence support the
non-zero Reynolds stress. The Reynold stress, in turn, modifies the shear via momentum transport. Hence, the shear
flow reinforce the self-tilting.

Transport: Rate of net 
particle/temperature

Drift-wave: ExB scattering  
(fluctuation, growth rate:  )γ

3 Interacting populations 
from DW fluctuation 

Density/temperature 
gradient drive

1

Waves: Drift-wave/ITG Zonal flow

Non-linear coupling

2 3

Figure 7: There are thee interaction populations from a single fluctuation intensity.
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Transport: Rate of net 
particle/temperature

Density/temperature 
gradient drive

Waves: Drift-wave/ITG Zonal flow

Non-linear coupling

Nonlinear flow damping 
Collisional friction

drive

suppress

suppress

prey predator

Figure 8: The predator prey model.
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